Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Neuron ; 2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38492575

RESUMO

Whisker stimulation in awake mice evokes transient suppression of simple spike probability in crus I/II Purkinje cells. Here, we investigated how simple spike suppression arises synaptically, what it encodes, and how it affects cerebellar output. In vitro, monosynaptic parallel fiber (PF)-excitatory postsynaptic currents (EPSCs) facilitated strongly, whereas disynaptic inhibitory postsynaptic currents (IPSCs) remained stable, maximizing relative inhibitory strength at the onset of PF activity. Short-term plasticity thus favors the inhibition of Purkinje spikes before PFs facilitate. In vivo, whisker stimulation evoked a 2-6 ms synchronous spike suppression, just 6-8 ms (∼4 synaptic delays) after sensory onset, whereas active whisker movements elicited broadly timed spike rate increases that did not modulate sensory-evoked suppression. Firing in the cerebellar nuclei (CbN) inversely correlated with disinhibition from sensory-evoked simple spike suppressions but was decoupled from slow, non-synchronous movement-associated elevations of Purkinje firing rates. Synchrony thus allows the CbN to high-pass filter Purkinje inputs, facilitating sensory-evoked cerebellar outputs that can drive movements.

2.
Biophys J ; 2023 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-38130058

RESUMO

Discovered just over 25 years ago in cerebellar Purkinje neurons, resurgent Na current was originally described operationally as a component of voltage-gated Na current that flows upon repolarization from relatively depolarized potentials and speeds recovery from inactivation, increasing excitability. Its presence in many excitable cells and absence from others has raised questions regarding its biophysical and molecular mechanisms. Early studies proposed that Na channels capable of generating resurgent current are subject to a rapid open-channel block by an endogenous blocking protein, which binds upon depolarization and unblocks upon repolarization. Since the time that this mechanism was suggested, many physiological and structural studies of both Na and K channels have revealed aspects of gating and conformational states that provide insights into resurgent current. These include descriptions of domain movements for activation and inactivation, solution of cryo-EM structures with pore-blocking compounds, and identification of native blocking domains, proteins, and modulatory subunits. Such results not only allow the open-channel block hypothesis to be refined but also link it more clearly to research that preceded it. This review considers possible mechanisms for resurgent Na current in the context of earlier and later studies of ion channels and suggests a framework for future research.

3.
J Physiol ; 601(23): 5147-5164, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37837315

RESUMO

Many neurons that fire high-frequency action potentials express specialized voltage-gated Na channel complexes that not only conduct transient current upon depolarization, but also pass resurgent current upon repolarization. The resurgent current is associated with recovery of transient current, even at moderately negative potentials where fast inactivation is usually absorbing. The combined results of many experimental studies have led to the hypothesis that resurgent current flows upon repolarization when an endogenous blocking protein that occludes open channels at depolarized potentials is expelled by inwardly permeating Na ions. Additional observations have suggested that the position of the voltage sensor of domain IV regulates the affinity of the channel for the putative blocker. To test the effectiveness of a kinetic scheme incorporating these features, here we develop and justify a Markov model with states grounded in known Na channel conformations. Simulations were designed to investigate whether including a permeation-dependent unblocking rate constant and two open-blocked states, superimposed on conformations and voltage-sensitive movements present in all voltage-gated Na channels, is sufficient to account for the unusual gating of channels with a resurgent component. Optimizing rate constant parameters against a wide range of experimental data from cerebellar Purkinje cells demonstrates that a kinetic scheme for Na channels incorporating the novel aspects of a permeation-dependent unblock, as well as distinct high- and low-affinity blocked states, reproduces all the attributes of experimentally recorded Na currents in a physiologically plausible manner.


Assuntos
Células de Purkinje , Canais de Sódio , Canais de Sódio/metabolismo , Células de Purkinje/fisiologia , Neurônios/fisiologia , Potenciais de Ação
4.
Curr Biol ; 33(16): 3299-3311.e3, 2023 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-37421952

RESUMO

The cerebellum regulates both reflexive and acquired movements. Here, by recording voltage-clamped synaptic currents and spiking in cerebellar output (eurydendroid) neurons in immobilized larval zebrafish, we investigated synaptic integration during reflexive movements and throughout associative motor learning. Spiking coincides with the onset of reflexive fictive swimming but precedes learned swimming, suggesting that eurydendroid signals may facilitate the initiation of acquired movements. Although firing rates increase during swimming, mean synaptic inhibition greatly exceeds mean excitation, indicating that learned responses cannot result solely from changes in synaptic weight or upstream excitability that favor excitation. Estimates of spike threshold crossings based on measurements of intrinsic properties and the time course of synaptic currents demonstrate that noisy excitation can transiently outweigh noisy inhibition enough to increase firing rates at swimming onset. Thus, the millisecond-scale variance of synaptic currents can regulate cerebellar output, and the emergence of learned cerebellar behaviors may involve a time-based code.


Assuntos
Neurônios , Peixe-Zebra , Animais , Peixe-Zebra/fisiologia , Potenciais de Ação/fisiologia , Larva , Neurônios/fisiologia , Cerebelo/fisiologia
5.
J Neurophysiol ; 126(3): 763-776, 2021 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-34346760

RESUMO

Cerebellar Purkinje neurons help compute absolute subsecond timing, but how their firing is affected during repetitive sensory stimulation with consistent subsecond intervals remains unaddressed. Here, we investigated how simple and complex spikes of Purkinje cells change during regular application of air puffs (3.3 Hz for ∼4 min) to the whisker pad of awake, head-fixed female mice. Complex spike responses fell into two categories: those in which firing rates increased (at ∼50 ms) and then fell [complex spike elevated (CxSE) cells] and those in which firing rates decreased (at ∼70 ms) and then rose [complex spike reduced (CxSR) cells]. Both groups had indistinguishable rates of basal complex (∼1.7 Hz) and simple (∼75 Hz) spikes and initially responded to puffs with a well-timed sensory response, consisting of a short-latency (∼15 ms), transient (4 ms) suppression of simple spikes. CxSE more than CxSR cells, however, also showed a longer-latency increase in simple spike rate, previously shown to reflect motor command signals. With repeated puffs, basal simple spike rates dropped greatly in CxSR but not CxSE cells; complex spike rates remained constant, but their temporal precision rose in CxSR cells and fell in CxSE cells. Also over time, transient simple spike suppression gradually disappeared in CxSE cells, suggesting habituation, but remained stable in CxSR cells, suggesting reliable transmission of sensory stimuli. During stimulus omissions, both categories of cells showed complex spike suppression with different latencies. The data indicate two modes by which Purkinje cells transmit regular repetitive stimuli, distinguishable by their climbing fiber signals.NEW & NOTEWORTHY Responses of cerebellar Purkinje cells in awake mice form two categories defined by complex spiking during regular trains of brief, somatosensory stimuli. Cells in which complex spike probability first increases or decreases show simple spike suppressions that habituate or persist, respectively. Stimulus omissions alter complex spiking. The results provide evidence for differential suppression of olivary cells during sensory stimulation and omissions and illustrate that climbing fiber innervation defines Purkinje cell responses to repetitive stimuli.


Assuntos
Potenciais de Ação , Potenciais Somatossensoriais Evocados , Células de Purkinje/fisiologia , Animais , Camundongos , Camundongos Endogâmicos C57BL , Tempo de Reação
6.
Elife ; 92020 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-32207681

RESUMO

Innate defensive behaviors, such as freezing, are adaptive for avoiding predation. Freezing-related midbrain regions project to the cerebellum, which is known to regulate rapid sensorimotor integration, raising the question of cerebellar contributions to freezing. Here, we find that neurons of the mouse medial (fastigial) cerebellar nuclei (mCbN), which fire spontaneously with wide dynamic ranges, send glutamatergic projections to the ventrolateral periaqueductal gray (vlPAG), which contains diverse cell types. In freely moving mice, optogenetically stimulating glutamatergic vlPAG neurons that express Chx10 reliably induces freezing. In vlPAG slices, mCbN terminals excite ~20% of neurons positive for Chx10 or GAD2 and ~70% of dopaminergic TH-positive neurons. Stimulating either mCbN afferents or TH neurons augments IPSCs and suppresses EPSCs in Chx10 neurons by activating postsynaptic D2 receptors. The results suggest that mCbN activity regulates dopaminergic modulation of the vlPAG, favoring inhibition of Chx10 neurons. Suppression of cerebellar output may therefore facilitate freezing.


Assuntos
Cerebelo/fisiologia , Neurônios/fisiologia , Substância Cinzenta Periaquedutal/fisiologia , Sinapses/fisiologia , Animais , Comportamento Animal , Feminino , Reação de Congelamento Cataléptica , Proteínas de Homeodomínio/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Optogenética , Receptores Dopaminérgicos/fisiologia , Reflexo de Sobressalto , Potenciais Sinápticos , Fatores de Transcrição/fisiologia
7.
Elife ; 92020 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-32127131

RESUMO

There is a pressing need to increase the rigor of research in the life and biomedical sciences. To address this issue, we propose that communities of 'rigor champions' be established to campaign for reforms of the research culture that has led to shortcomings in rigor. These communities of rigor champions would also assist in the development and adoption of a comprehensive educational platform that would teach the principles of rigorous science to researchers at all career stages.


Assuntos
Pesquisa Biomédica/educação , Pesquisa Biomédica/métodos , Pesquisa Biomédica/normas , Projetos de Pesquisa/normas , Humanos
8.
J Neurosci ; 40(15): 3063-3074, 2020 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-32139583

RESUMO

The cerebellum influences motor control through Purkinje target neurons, which transmit cerebellar output. Such output is required, for instance, for larval zebrafish to learn conditioned fictive swimming. The output cells, called eurydendroid neurons (ENs) in teleost fish, are inhibited by Purkinje cells and excited by parallel fibers. Here, we investigated the electrophysiological properties of glutamatergic ENs labeled by the transcription factor olig2. Action potential firing and synaptic responses were recorded in current clamp and voltage clamp from olig2+ neurons in immobilized larval zebrafish (before sexual differentiation) and were correlated with motor behavior by simultaneous recording of fictive swimming. In the absence of swimming, olig2+ ENs had basal firing rates near 8 spikes/s, and EPSCs and IPSCs were evident. Comparing Purkinje firing rates and eurydendroid IPSC rates indicated that 1-3 Purkinje cells converge onto each EN. Optogenetically suppressing Purkinje simple spikes, while preserving complex spikes, suggested that eurydendroid IPSC size depended on presynaptic spike duration rather than amplitude. During swimming, EPSC and IPSC rates increased. Total excitatory and inhibitory currents during sensory-evoked swimming were both more than double those during spontaneous swimming. During both spontaneous and sensory-evoked swimming, the total inhibitory current was more than threefold larger than the excitatory current. Firing rates of ENs nevertheless increased, suggesting that the relative timing of IPSCs and EPSCs may permit excitation to drive additional eurydendroid spikes. The data indicate that olig2+ cells are ENs whose activity is modulated with locomotion, suiting them to participate in sensorimotor integration associated with cerebellum-dependent learning.SIGNIFICANCE STATEMENT The cerebellum contributes to movements through signals generated by cerebellar output neurons, called eurydendroid neurons (ENs) in fish (cerebellar nuclei in mammals). ENs receive sensory and motor signals from excitatory parallel fibers and inhibitory Purkinje cells. Here, we report electrophysiological recordings from ENs of larval zebrafish that directly illustrate how synaptic inhibition and excitation are integrated by cerebellar output neurons in association with motor behavior. The results demonstrate that inhibitory and excitatory drive both increase during fictive swimming, but inhibition greatly exceeds excitation. Firing rates nevertheless increase, providing evidence that synaptic integration promotes cerebellar output during locomotion. The data offer a basis for comparing aspects of cerebellar coding that are conserved and that diverge across vertebrates.


Assuntos
Cerebelo/fisiologia , Neurônios/fisiologia , Fator de Transcrição 2 de Oligodendrócitos/fisiologia , Natação/fisiologia , Sinapses/fisiologia , Proteínas de Peixe-Zebra/fisiologia , Peixe-Zebra/fisiologia , Potenciais de Ação/fisiologia , Animais , Animais Geneticamente Modificados , Fenômenos Eletrofisiológicos/fisiologia , Potenciais Pós-Sinápticos Excitadores/fisiologia , Larva , Optogenética , Técnicas de Patch-Clamp , Células de Purkinje/fisiologia
9.
Elife ; 82019 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-31573511

RESUMO

After acknowledging that power differentials exist, can scientists find inspiration to persevere anyway?


Assuntos
Poder Psicológico , Pesquisadores/psicologia , Fatores Sexuais
10.
J Gen Physiol ; 151(11): 1300-1318, 2019 11 04.
Artigo em Inglês | MEDLINE | ID: mdl-31558566

RESUMO

Voltage-gated Na channels of Purkinje cells are specialized to maintain high availability during high-frequency repetitive firing. They enter fast-inactivated states relatively slowly and undergo a voltage-dependent open-channel block by an intracellular protein (or proteins) that prevents stable fast inactivation and generates resurgent Na current. These properties depend on the pore-forming α subunits, as well as modulatory subunits within the Na channel complex. The identity of the factors responsible for open-channel block remains a question. Here we investigate the effects of genetic mutation of two Na channel auxiliary subunits highly expressed in Purkinje cells, NaVß4 and FGF14, on modulating Na channel blocked as well as inactivated states. We find that although both NaVß4 and the FGF14 splice variant FGF14-1a contain sequences that can generate resurgent-like currents when applied to Na channels in peptide form, deletion of either protein, or both proteins simultaneously, does not eliminate resurgent current in acutely dissociated Purkinje cell bodies. Loss of FGF14 expression does, however, reduce resurgent current amplitude and leads to an acceleration and stabilization of inactivation that is not reversed by application of the site-3 toxin, anemone toxin II (ATX). Tetrodotoxin (TTX) sensitivity is higher for resurgent than transient components of Na current, and loss of FGF14 preferentially affects a highly TTX-sensitive subset of Purkinje α subunits. The data suggest that NaV1.6 channels, which are known to generate the majority of Purkinje cell resurgent current, bind TTX with high affinity and are modulated by FGF14 to facilitate open-channel block.


Assuntos
Fatores de Crescimento de Fibroblastos/metabolismo , Células de Purkinje/fisiologia , Subunidade beta-4 do Canal de Sódio Disparado por Voltagem/metabolismo , Animais , Fenômenos Eletrofisiológicos , Fatores de Crescimento de Fibroblastos/genética , Regulação da Expressão Gênica/efeitos dos fármacos , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase , Sódio/metabolismo , Tetrodotoxina/farmacologia , Subunidade beta-4 do Canal de Sódio Disparado por Voltagem/genética
11.
Neuron ; 99(3): 564-575.e2, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30017394

RESUMO

To test how cerebellar crus I/II Purkinje cells and their targets in the lateral cerebellar nuclei (CbN) integrate sensory and motor-related inputs and contribute to reflexive movements, we recorded extracellularly in awake, head-fixed mice during non-contact whisking. Ipsilateral or contralateral air puffs elicited changes in population Purkinje simple spike rates that matched whisking kinematics (∼1 Hz/1° protraction). Responses remained relatively unaffected when ipsilateral sensory feedback was removed by lidocaine but were reduced by optogenetically inhibiting the reticular nuclei. Optogenetically silencing cerebellar output suppressed movements. During puff-evoked whisks, both Purkinje and CbN cells generated well-timed spikes in sequential 2- to 4-ms windows at response onset, such that they alternately elevated their firing rates just before protraction. With spontaneous whisks, which were smaller than puff-evoked whisks, well-timed spikes were absent and CbN cells were inhibited. Thus, sensory input can facilitate millisecond-scale, well-timed spiking in Purkinje and CbN cells and amplify reflexive whisker movements.


Assuntos
Potenciais de Ação/fisiologia , Córtex Cerebelar/fisiologia , Cerebelo/fisiologia , Rede Nervosa/fisiologia , Vibrissas/fisiologia , Animais , Córtex Cerebelar/química , Córtex Cerebelar/citologia , Cerebelo/química , Cerebelo/citologia , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Rede Nervosa/química , Rede Nervosa/citologia , Células de Purkinje/química , Células de Purkinje/fisiologia , Vibrissas/citologia , Vibrissas/inervação
12.
Elife ; 72018 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-29659351

RESUMO

Neurons of the cerebellar nuclei (CbN), which generate cerebellar output, are inhibited by Purkinje cells. With extracellular recordings during voluntary locomotion in head-fixed mice, we tested how the rate and coherence of inhibition influence CbN cell firing and well-practiced movements. Firing rates of Purkinje and CbN cells were modulated systematically through the stride cycle (~200-300 ms). Optogenetically stimulating ChR2-expressing Purkinje cells with light steps or trains evoked either asynchronous or synchronous inhibition of CbN cells. Steps slowed CbN firing. Trains suppressed CbN cell firing less effectively, but consistently altered millisecond-scale spike timing. Steps or trains that perturbed stride-related modulation of CbN cell firing rates correlated well with irregularities of movement, suggesting that ongoing locomotion is sensitive to alterations in modulated CbN cell firing. Unperturbed locomotion continued more often during trains than steps, however, suggesting that stride-related modulation of CbN spiking is less readily disrupted by synchronous than asynchronous inhibition.


Assuntos
Potenciais de Ação , Núcleos Cerebelares/fisiologia , Locomoção , Neurônios/fisiologia , Animais , Camundongos Endogâmicos C57BL , Optogenética
13.
J Physiol ; 595(21): 6703-6718, 2017 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-28795396

RESUMO

KEY POINTS: The inferior olive sends instructive motor signals to the cerebellum via the climbing fibre projection, which sends collaterals directly to large premotor neurons of the mouse cerebellar nuclei (CbN cells). Optogenetic activation of inferior olivary axons in vitro evokes EPSCs in CbN cells of several hundred pA to more than 1 nA. The inputs are three-fold larger at younger ages, 12 to 14 days old, than at 2 months old, suggesting a strong functional role for this pathway earlier in development. The EPSCs are multipeaked, owing to burst firing in several olivary afferents that fire asynchronously. The convergence of climbing fibre collaterals onto CbN cells decreases from ∼40 to ∼8, which is consistent with the formation of closed-loop circuits in which each CbN neuron receives input from 4-7 collaterals from inferior olivary neurons as well as from all 30-50 Purkinje cells that are innervated by those olivary neurons. ABSTRACT: The inferior olive conveys instructive signals to the cerebellum that drive sensorimotor learning. Inferior olivary neurons transmit their signals via climbing fibres, which powerfully excite Purkinje cells, evoking complex spikes and depressing parallel fibre synapses. Additionally, however, these climbing fibres send collaterals to the cerebellar nuclei (CbN). In vivo and in vitro data suggest that climbing fibre collateral excitation is weak in adult mice, raising the question of whether the primary role of this pathway may be developmental. We therefore examined climbing fibre collateral input to large premotor CbN cells over development by virally expressing channelrhodopsin in the inferior olive. In acute cerebellar slices from postnatal day (P)12-14 mice, light-evoked EPSCs were large (> 1 nA at -70 mV). The amplitude of these EPSCs decreased over development, reaching a plateau of ∼350 pA at P20-60. Trains of EPSCs (5 Hz) depressed strongly throughout development, whereas convergence estimates indicated that the total number of functional afferents decreased with age. EPSC waveforms consisted of multiple peaks, probably resulting from action potential bursts in single collaterals and variable times to spike threshold in converging afferents. Activating climbing fibre collaterals evoked well-timed increases in firing probability in CbN neurons, especially in younger mice. The initially strong input, followed by the decrement in synaptic strength coinciding with the pruning of climbing fibres in the cerebellar cortex, implicates the climbing fibre collateral pathway in early postnatal development. Additionally, the persistence of substantial synaptic input at least to P60 suggests that this pathway may function in cerebellar processing into adulthood.


Assuntos
Núcleos Cerebelares/fisiologia , Potenciais Pós-Sinápticos Excitadores , Células de Purkinje/fisiologia , Animais , Núcleos Cerebelares/citologia , Núcleos Cerebelares/crescimento & desenvolvimento , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL
14.
Elife ; 62017 05 25.
Artigo em Inglês | MEDLINE | ID: mdl-28541889

RESUMO

To study cerebellar activity during learning, we made whole-cell recordings from larval zebrafish Purkinje cells while monitoring fictive swimming during associative conditioning. Fish learned to swim in response to visual stimulation preceding tactile stimulation of the tail. Learning was abolished by cerebellar ablation. All Purkinje cells showed task-related activity. Based on how many complex spikes emerged during learned swimming, they were classified as multiple, single, or zero complex spike (MCS, SCS, ZCS) cells. With learning, MCS and ZCS cells developed increased climbing fiber (MCS) or parallel fiber (ZCS) input during visual stimulation; SCS cells fired complex spikes associated with learned swimming episodes. The categories correlated with location. Optogenetically suppressing simple spikes only during visual stimulation demonstrated that simple spikes are required for acquisition and early stages of expression of learned responses, but not their maintenance, consistent with a transient, instructive role for simple spikes during cerebellar learning in larval zebrafish.


Assuntos
Potenciais de Ação , Cerebelo/fisiologia , Aprendizagem , Células de Purkinje/fisiologia , Natação , Peixe-Zebra/fisiologia , Animais , Larva/fisiologia
15.
J Physiol ; 595(15): 5245-5264, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28513836

RESUMO

KEY POINTS: Large premotor neurons of the cerebellar nuclei (CbN cells) integrate synaptic inhibition from Purkinje neurons and synaptic excitation from mossy fibres to generate cerebellar output. We find that mossy fibre inputs to CbN cells generate unitary AMPA receptor EPSCs of ∼1 nS that decay in ∼1 ms and mildly voltage-dependent NMDA receptor EPSCs of ∼0.6 nS that decay in ∼7 ms. A few hundred mossy fibres active at a few tens of spikes s-1 must converge on CbN cells to generate physiological CbN spike rates (∼60 spikes s-1 ) during convergent inhibition from spontaneously active Purkinje cells. Dynamic clamp studies in cerebellar slices from weanling mice demonstrate that synaptic excitation from mossy fibres becomes more effective at increasing the rate of CbN cell spiking when the coherence (synchrony) of convergent inhibition is increased. ABSTRACT: Large projection neurons of the cerebellar nuclei (CbN cells), whose activity generates movement, are inhibited by Purkinje cells and excited by mossy fibres. The high convergence, firing rates and strength of Purkinje inputs predict powerful suppression of CbN cell spiking, raising the question of what activity patterns favour excitation over inhibition. Recording from CbN cells at near-physiological temperatures in cerebellar slices from weanling mice, we measured the amplitude, kinetics, voltage dependence and short-term plasticity of mossy fibre-mediated EPSCs. Unitary EPSCs were small and brief (AMPA receptor, ∼1 nS, ∼1 ms; NMDA receptor, ∼0.6 nS, ∼7 ms) and depressed moderately. Using these experimentally measured parameters, we applied combinations of excitation and inhibition to CbN cells with dynamic clamp. Because Purkinje cells can fire coincident simple spikes during cerebellar behaviours, we varied the proportion (0-20 of 40) and precision (0-4 ms jitter) of synchrony of inhibitory inputs, along with the rates (0-100 spikes s-1 ) and number (0-800) of excitatory inputs. Even with inhibition constant, when inhibitory synchrony was higher, excitation increased CbN cell firing rates more effectively. Partial inhibitory synchrony also dictated CbN cell spike timing, even with physiological rates of excitation. These effects were present with ≥10 inhibitory inputs active within 2-4 ms of each other. Conversely, spiking was most effectively suppressed when inhibition was maximally asynchronous. Thus, the rate and relative timing of Purkinje-mediated inhibition set the rate and timing of cerebellar output. The results suggest that increased coherence of Purkinje cell activity can facilitate mossy fibre-driven spiking by CbN cells, in turn driving movements.


Assuntos
Núcleos Cerebelares/fisiologia , Fibras Musgosas Hipocampais/fisiologia , Animais , Potenciais Pós-Sinápticos Excitadores , Feminino , Potenciais Pós-Sinápticos Inibidores , Masculino , Camundongos Endogâmicos C57BL , Receptores de AMPA/fisiologia , Receptores de N-Metil-D-Aspartato/fisiologia
16.
Elife ; 62017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28468723

RESUMO

Science can provide cures and improve health, and it can also make us more humane.


Assuntos
Pesquisa Biomédica/ética , Ciência/ética , Humanos
17.
Elife ; 52016 10 19.
Artigo em Inglês | MEDLINE | ID: mdl-27760003

RESUMO

There may be as many ways to think about the experience of women in science as there are women in science. Indira Raman offers one perspective.


Assuntos
Pesquisa Biomédica , Ciência , Feminino , Humanos , Mulheres
18.
Elife ; 52016 04 14.
Artigo em Inglês | MEDLINE | ID: mdl-27077953

RESUMO

Neurons of the cerebellar nuclei (CbN) transmit cerebellar signals to premotor areas. The cerebellum expresses several autism-linked genes, including GABRB3, which encodes GABAA receptor ß3 subunits and is among the maternal alleles deleted in Angelman syndrome. We tested how this Gabrb3 m-/p+ mutation affects CbN physiology in mice, separating responses of males and females. Wild-type mice showed sex differences in synaptic excitation, inhibition, and intrinsic properties. Relative to females, CbN cells of males had smaller synaptically evoked mGluR1/5-dependent currents, slower Purkinje-mediated IPSCs, and lower spontaneous firing rates, but rotarod performances were indistinguishable. In mutant CbN cells, IPSC kinetics were unchanged, but mutant males, unlike females, showed enlarged mGluR1/5 responses and accelerated spontaneous firing. These changes appear compensatory, since mutant males but not females performed indistinguishably from wild-type siblings on the rotarod task. Thus, sex differences in cerebellar physiology produce similar behavioral output, but provide distinct baselines for responses to mutations.


Assuntos
Transtorno Autístico/fisiopatologia , Cerebelo/fisiologia , Mutação , Receptores de GABA-A/metabolismo , Fatores Sexuais , Transmissão Sináptica , Animais , Transtorno Autístico/epidemiologia , Transtorno Autístico/genética , Feminino , Masculino , Camundongos , Receptores de GABA-A/genética , Receptores de Neurotransmissores/metabolismo
19.
Cell ; 162(4): 836-48, 2015 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-26276633

RESUMO

Circadian clocks regulate membrane excitability in master pacemaker neurons to control daily rhythms of sleep and wake. Here, we find that two distinctly timed electrical drives collaborate to impose rhythmicity on Drosophila clock neurons. In the morning, a voltage-independent sodium conductance via the NA/NALCN ion channel depolarizes these neurons. This current is driven by the rhythmic expression of NCA localization factor-1, linking the molecular clock to ion channel function. In the evening, basal potassium currents peak to silence clock neurons. Remarkably, daily antiphase cycles of sodium and potassium currents also drive mouse clock neuron rhythms. Thus, we reveal an evolutionarily ancient strategy for the neural mechanisms that govern daily sleep and wake.


Assuntos
Relógios Circadianos , Ritmo Circadiano , Drosophila/fisiologia , Animais , Relógios Biológicos , Membrana Celular/metabolismo , Drosophila/citologia , Proteínas de Drosophila/metabolismo , Técnicas de Silenciamento de Genes , Canais Iônicos/genética , Canais Iônicos/metabolismo , Proteínas de Membrana , Camundongos , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Neurônios/metabolismo , Técnicas de Patch-Clamp , Potássio/metabolismo , Sódio/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...